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Abstract

Here we present Gilles Pisier’s remarkable result that given any Hilbert space ℋ there exists a unique operator
space structure on ℋ such that the conjugate operator Hilbert space ℋ and the dual operator Hilbert space ℋ ∗ are
completely isometric. We give the results as presented by Effros and Ruan [ER00], and the interested reader may
reference Pisier’s original work [Pis96] for more details and properties of OH.

1 Pisier’s Self-Dual Operator Hilbert Space
As is well known, given any Hilbert space ℋ we may consider both the conjugate operator Hilbert space ℋ , and its
dual operator Hilbert space ℋ ∗. The map � ∶ H ⟶ ℋ ∗, � ↦ f� , f�(� ) ∶= (� | �) , is an isometry by the Riesz
representation theorem. It was shown by Pisier that there is a unique operator space structure onℋ so that � becomes
a complete isometry. Given two Hilbert spacesℋ ,K , define the operator

V ∶ ℋ ⊗2 K ⟶ (K ,ℋ ), � ⊗ � ↦ x�⊗� , x�⊗�(� ) = (� | �) �.

Letting (es)s∈s be an orthonormal basis forK .
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where the last equality is by Parseval’s equality. Thus, given any � ∈ ℋ , � ∈ K , we have x�⊗� is a Hilbert-Schmidt
operator from K to ℋ , and this has shown that the Hilbertian tensor product of the two Hilbert spaces is isometric
to the Hilbert-Schmidt operators between the respective spaces. By restricting the codomain of V to V (ℋ ⊗2 K ) we
have that V is a unitary, and thus have the unitary equivalence

� ∶ℬ(ℋ ⊗2 K ) ⟶ℬ((K ,ℋ )), u↦ V uV −1.

Given b ∈ℬ(ℋ ), and a ∈ℬ(K ), we have �(b ⊗ a)x = bxa∗. To see this suppose that x = x�⊗� . It then follows

�(b ⊗ a)x�⊗� = V (b ⊗ a)V −1x�⊗� = V (b ⊗ a)(� ⊗ �) = V (b� ⊗ a�) = xb�⊗a� = bx�⊗�a
∗.

To see this note that for any � ∈K we have
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Now, for Hilbert spaceℋ with sesquilinear form (⋅| ⋅), we have an induced matrix sesquilinear form given by

Mm(ℋ ) ×Mn(ℋ ) ⟶Mm ⊗Mn, (�, �) ↦ ( (�| �)) =
[(

�kl|| �ij
)]

i,j,k,l .

Given �, � ∈Mn(ℋ ), let
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where (eℎ) ⊂ ℋ is an orthonormal basis. Then we have
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At this point we are then able to prove an analogue to the Schwarz inequality.

Theorem 1.1 (Haagerup [Haa85]). Given a Hilbert spaceℋ and n ∈ ℕ, then for any �, � ∈Mn(ℋ ), we have
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� =
∑

�(ℎ) ⊗ eℎ
� =

∑

�(ℎ) ⊗ eℎ

then we may assume thatℋ =K = ℂn, since

( (�| �)) =
∑

�(ℎ) ⊗ �(ℎ) ∈Mn ⊗Mn.

Furthermore recall that if �, � ∈Mn then

trace(��∗) = trace

([

∑

k
�ik�jk

])

=
∑

i,j
�ij�ij =

∑

i,j

(

�ij
|

|

|

�ij
)

.

We then have by our above calculations that

‖( (�| �))‖ = ‖

‖

‖

∑

�(ℎ) ⊗ �(ℎ)‖‖
‖

= sup
{

‖

‖

‖

∑

�(ℎ)x�(ℎ)∗‖‖
‖2

∶ ‖x‖2 ≤ 1
}

= sup
{

|

|

|

|

trace
(

∑

�(ℎ)x�(ℎ)∗y∗
)

|

|

|

|

∶ ‖x‖2 , ‖y‖2 ≤ 1
}

.

Thus, fix an x and y as above and let x = � |x| , y = w |y| be the corresponding polar decompositions. Write x =
x1x2, x1 = � |x|

1
2 , x2 = |x|

1
2 , and take an analogous decomposition for y. It then follows that x1x∗1 = |x∗| , x∗2x2 =

|x| , where the first equality follows since

|
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2 = xx∗ = � |x| |x| �∗ = � |x| �∗� |x| �∗ = (� |x| �∗)2.
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The analogous equalities also hold for y. We then have the following string of inequalities
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The equality holds by decomposition of x and y into x1x2 and y1y2, respectively, and then using the tracial property,
and the last inequality follows by applying the classical Cauchy-Schwarz inequality. Continuing we get
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Given a Hilbert spaceℋ and n ∈ ℕ, we define the OH matrix norm ‖⋅‖o,n by

‖�‖o,n ∶= ‖( (�| �))‖
1
2 , � ∈Mn(ℋ ).

Thus, we have that if (eℎ)ℎ ⊂ ℋ is an orthornormal basis and � =
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We will now prove that ‖⋅‖o satisfies Ruan’s axioms and furthermore that it induces the unique operator space
structure on the Hilbert space such that its conjugate operator space and dual operator space are completely isometric.

Theorem 1.2 (Pisier). Given a Hilbert spaceℋ , then the OHmatrix norm onℋ satisfies Ruan’s axioms, and we let the
corresponding operator space

(

ℋ ,
{

‖⋅‖o,n
}

n∈ℕ
)

be denoted by ℋo. Letting ℋ and ℋ ∗ have the induced conjugate
and dual operator space structures, respectively, then ‖⋅‖o is the unique operator space matrix norm for which the
corresponding mapping

 ∶ ℋ ⟶ ℋ ∗

is completely isometric.

Proof. We begin by proving that ‖⋅‖o satisfies Ruan’s axioms. Let (eℎ)ℎ ⊂ ℋ be an orthonormal basis forℋ and let
� ∈Mn(ℋ ), � ∈Mm(ℋ ). Then we have that for
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which gives us Ruan’s second axiom. Therefore, ‖⋅‖o is indeed an operator space matrix norm.
We now prove that  ∶ ℋo ⟶ ℋ ∗

o is a complete isometry. Given n ∈ ℕ, and � ∈Mn(ℋo), we have

 (n)(�) ∈Mn(ℋ ∗
o ) ≅ Cℬ(ℋo,Mn),

and thus we set ' =  (n)(�). Therefore for m ∈ M, and � ∈Mm(ℋo) we see

'(m)(�) =
[

'(�kl)
]

k,l =
[

 (n)(�)(�kl)
]

k,l
=
[

 (�ij)(�kl)
]

i,j,k,l
=
[(

�kl|| �ij
)]

i,j,k,l = ((�| �)) .

It then follows by applying our analogue of Cauchy-Schwarz that
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implying that  is a complete isometry.

Suppose now that ‖⋅‖′ is another operator space matrix norm such that  is a complete isometry. Then by our
above calculations we have

‖�‖o = sup
{

‖( (�| �))‖ ∶ ‖�‖′ ≤ 1
}

.

Letting � = �
‖�‖′ implies that

‖�‖′ ≥ ‖( (�| �))‖ 1
‖�‖′

⟹ ‖�‖′ ≥ ‖�‖o .

Conversely this also works for all vectors � which implies

‖�‖′ = sup
{

‖( (�| �))‖ ∶ ‖�‖′ ≤ 1
}

≤ sup
{

‖( (�| �))‖ ∶ ‖�‖o ≤ 1
}

= ‖( (�| �))‖
1
2 = ‖�‖o .

Thus, ‖⋅‖o is the unique operator space matrix norm for which the conjugate Hilbert operator space and the dual Hilbert
operator space are completely isometric.
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